当前所在位置: 首页 > 儿童教育 > 正文

八年级数学上册基础知识点总结

2022-11-28 互联网 【 字体:

学习没有比一步一个脚印更困难的了。虽然步子很陡,但只有一步一步地去实现学习的理想。 祝你学习进步!下面是小编为大家整理的有关八年级数学上册知识点总结,希望对你们有帮助!

八年级数学上册知识点总结

第十一章 全等三角形

1.全等三角形的性质:全等三角形对应边相等、对应角相等.

2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).

3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

第十二章 轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

3.角平分线上的点到角两边距离相等.

4.线段垂直平分线上的任意一点到线段两个端点的距离相等.

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

6.轴对称图形上对应线段相等、对应角相等.

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.

10.等腰三角形的判定:等角对等边.

11.等边三角形的三个内角相等,等于60°,

12.等边三角形的判定: 三个角都相等的三角形是等腰三角形.

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形.

13.直角三角形中,30°角所对的直角边等于斜边的一半.

14.直角三角形斜边上的中线等于斜边的一半

第十三章 实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.

※正数的立方根是正数;0的立方根是0;负数的立方根是负数.

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章 一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.

3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.

4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.

5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

第十五章 整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

2.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同.

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

※7.幂的乘方与积乘方法则均可逆向运用.

3. 整式的乘法

※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式.

※(2).单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序.

※(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 .

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.

5.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误.

添括号法则:添正不变号,添负各项变号,去括号法则同样

6. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号.

8. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.


八年级数学上册基础知识点总结相关文章:

★ 数学人教版八年级上册知识点总结

★ 初二上册数学知识点人教版总结归纳

★ 初二人教版上册数学知识点归纳总结

★ 初二2021上学期数学知识点归纳总结

★ 八年级上册人教版数学第二章知识点归纳总结

★ 人教版八年级上册数学知识点考试试卷及答案参考

★ 八年级上册数学重要知识点试卷及答案参考2021

★ 八年级上册数学知识点期中试题及答案分析总结

★ 初中初二数学学习方法和技巧总结2021

★ 初二期末考数学复习学习方法总结

阅读全文
相关推荐

如何自制蛋挞

如何自制蛋挞
1、倒入低筋面、黄油和水,揉成面团状,藏一小时后取出,抹上黄油卷起,包上保鲜膜冷藏半小时。2、取出,将面团切成一厘米的面团,放入模具内,用力按压,中间稍薄,外缘要比模具高,将蛋挞液倒入蛋挞皮中,放入烤箱里烤30分钟即可。

肉火烧面怎么和面

肉火烧面怎么和面
1、首先用温水把酵母融开,加入面粉,用手把面粉揉成非常软的面团,可以放一点熬好的猪油在面团里面。2、然后放在温暖的地方,盖上保鲜膜发酵至2倍大,发好的面团用手插入不回缩,就说明面团发酵好了。

奶茶几分糖好喝

奶茶几分糖好喝
1、不同的人对奶茶的口感要求是不一样的,一般来说,奶茶有三分糖、五分糖、七分糖三种不同的口味。2、女生一般都喜欢喝甜一点的,而男生则喜欢喝不那么甜的,七分糖的奶茶最好喝。

过桥米线是哪里的?

过桥米线是哪里的?
过桥米线是来自云南省滇南地区的一种有名特色小吃。过桥米线最早是在清朝就已经出现,距离现在至少有一百多年的历史啦!起源于建水县东城外锁龙桥西侧的鸡市街头处,有建水的特产草芽、地椒作配料,风味独特而远近闻名。深受广大美食爱好者的喜欢,不少人为此专门长途跋涉,只为尝

面霜和乳液的区别

面霜和乳液的区别
面霜和乳液的区别,相较而言乳液的水分含量要比面霜高,乳液质地要轻薄一些,乳液主要作用是保湿,滋润可以隔离外界干燥的气候,面霜既可保湿,又可美白,还能抗衰老,乳液的吸收快一些,而面霜吸收比较慢一些,因为液体的吸收速度都比较快。

怎么摘隐形眼镜

怎么摘隐形眼镜
在摘隐形眼镜之前,先用洗手液将手清洗干净,以免将细菌带入眼睛内,对着镜子,用右手中指轻拉眼睛下眼睑,左手中指轻拉眼睛上眼睑,让黑色眼球暴露在空气中,用右手食指和拇指轻触镜片的两边缘部分,向中间推使镜片拱起,再用两手指轻轻捏出镜片即可。

粉饼和散粉的区别

粉饼和散粉的区别
粉饼是呈压缩固体状态,多呈圆形或者方形,散粉则是细腻的粉末状,粉饼遮瑕力会比较强一些,可以湿用做粉底,或者用来补妆,而散粉则是定妆的效果,粉饼通常用在底妆的第一步,而散粉通常用在底妆最后一步。

冷烫和热烫的区别

冷烫和热烫的区别
冷烫和热烫的区别:冷烫对头发的要求是要在保温状态下才能给卷有个好的效果,而热烫是在干和湿的情况下都行,热烫烫出来的头发比较自然明显而有弹力,冷烫的头发风干后基本看不出来,并且发质会有点干。

高品质香水如何鉴别?用三步就可以解决

高品质香水如何鉴别?用三步就可以解决
1、看色泽以天然香料调制而成的高级香水,都有它本来的颜色,且大都是琥珀色或褐色,看起来很像宝石,比如,从茉莉、玫瑰或水仙等天然鲜花中所萃取的精油都呈黄色、褐白或绿褐色;此外,香水中所添加的魅惑香气物性香料也是褐色,苔类中的橡树苔是绿色,从树根或树根脂类中萃取的

如何去除黑眼圈

如何去除黑眼圈
去除黑眼圈首先可以用热毛巾敷眼,然后再用冷毛巾敷,十分钟就能让黑眼圈淡化的不那么严重,其次将去壳后的鸡蛋用无菌纱布包裹住,敷于眼部轻轻转动,可以急救去除黑眼圈,另外抹完眼霜后,用双手顺时针按摩,可以促进血液循环消除黑眼圈。
本文Tag