2013年高考全国卷数学文科(2013数学高考题全国1卷文科)
2023-07-17 本站作者 【 字体:大 中 小 】
2013年全国高考数学文科试卷及答案
高考志愿胡乱填,毕业三年不见钱。又到了一年毕业季,报考季。好多人问我志愿如何填,学校如何选,我在这里做一个简单的说明,供大家在报考时做点参考。
准备工作:
你需要准备的有,所在省的今年和以前三到四年的高考成绩一分一段表、今明所在省的高校招生计划表、所在省的前三到四年的各高校录取分数线一览表(越详细越好)。
筛选学校的一般步骤:
1、 对照你的高考成绩,和今年的一分一段表,确定你的省排名。
2、 确定省排名后,对照前几年的一分一段表,了解前几年这个排名的大概分数。
3、 对照前几年的各高校录取分数线一览表,看对应年份,大概可以报考的学校范围。
4、 根据自己的身体条件,家庭经济条件等硬性条件筛选学校,划定目标学校专业范围。
5、 查看今年的招生计划,确定这些学校专业的招生人数是否有较大的变动,招生政策是否有变等等。
6、 逐渐缩小范围,确定志愿。
2013年陕西高考卷是几卷
2013年陕西高考卷共有十一卷,分别是语文、数学(文科)、数学(理科)、英语、物理、化学、生物、历史、地理、政治和技术。每卷考试时间为150分钟,每卷考试内容包括选择题、填空题和解答题。每卷考试的总分值为150分,满分为100分,及格分数为60分。考生在考试中必须严格遵守考试纪律,不得抄袭、作弊或其他违反考试纪律的行为。
[img]2013年浙江高考数学平均分
您想问的是2013年浙江高考数学平均分是多少吗?2013年94分。
浙江省的高考数学还是自主命题,不同于全国卷,2013年浙江高考数学平均分是94分,比往年降低了3分左右。
2013年浙江高考试题:文科数学高考试题全国卷简称全国卷,它是由教育部考试中心组织命制的、适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。
2013年新课标全国卷2文科数学
不知道你要题或答案,所以都来,可以直接看这个
2013年普通高等学校夏季招生全国统一考试数学文(全国卷II新课标)
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2013课标全国Ⅱ,文1)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=().
A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2,-1,0} D..{-3,-2,-1}
2.(2013课标全国Ⅱ,文2)=().
A. B.2 C. D..1
3.(2013课标全国Ⅱ,文3)设x,y满足约束条件则z=2x-3y的最小值是().
A.-7 B.-6 C.-5 D.-3
4.(2013课标全国Ⅱ,文4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,,,则△ABC的面积为().
A. B. C. D.
5.(2013课标全国Ⅱ,文5)设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为().
A. B. C. D.
6.(2013课标全国Ⅱ,文6)已知sin 2α=,则=().
A. B. C. D.
7.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N=4,那么输出的S=().
A. B.
C. D.
8.(2013课标全国Ⅱ,文8)设a=log32,b=log52,c=log23,则().
A.a>c>b B.b>c>a C.c>b>a D.c>a>b
9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为().
10.(2013课标全国Ⅱ,文10)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为().
A.y=x-1或y=-x+1 B.y=或y=
C.y=或y= D.y=或y=
11.(2013课标全国Ⅱ,文11)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是().
A.∃x0∈R,f(x0)=0
B.函数y=f(x)的图像是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减
D.若x0是f(x)的极值点,则f′(x0)=0
12.(2013课标全国Ⅱ,文12)若存在正数x使2x(x-a)<1成立,则a的取值范围是().
A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分.
13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.
14.(2013课标全国Ⅱ,文14)已知正方形ABCD的边长为2,E为CD的中点,则=__________.
15.(2013课标全国Ⅱ,文15)已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为__________.
16.(2013课标全国Ⅱ,文16)函数y=cos(2x+φ)(-π≤φ<π)的图像向右平移个单位后,与函数y=的图像重合,则φ=__________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(2013课标全国Ⅱ,文17)(本小题满分12分)已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n-2.
18.(2013课标全国Ⅱ,文18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
19.(2013课标全国Ⅱ,文19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57 000元的概率.
20.(2013课标全国Ⅱ,文20)(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为在y轴上截得线段长为.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为,求圆P的方程.
21.(2013课标全国Ⅱ,文21)(本小题满分12分)已知函数f(x)=x2e-x.
(1)求f(x)的极小值和极大值;
(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.
22.(2013课标全国Ⅱ,文22)(本小题满分10分)选修4—1:几何证明选讲
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.
23.(2013课标全国Ⅱ,文23)(本小题满分10分)选修4—4:坐标系与参数方程
已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
24.(2013课标全国Ⅱ,文24)(本小题满分10分)选修4—5:不等式选讲
设a,b,c均为正数,且a+b+c=1.证明:
(1)ab+bc+ca≤;
(2)≥1.
2013年普通高等学校夏季招生全国统一考试数学文史类
(全国卷II新课标)
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.
答案:C
解析:由题意可得,M∩N={-2,-1,0}.故选C.
2.
答案:C
解析:∵=1-i,∴=|1-i|=.
3.
答案:B
解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为,先画出l0:y=,当z最小时,直线在y轴上的截距最大,故最优点为图中的点C,由可得C(3,4),代入目标函数得,zmin=2×3-3×4=-6.
4.
答案:B
解析:A=π-(B+C)=,
由正弦定理得,
则,
∴S△ABC=.
5.
答案:D
解析:如图所示,在Rt△PF1F2中,|F1F2|=2c,
设|PF2|=x,则|PF1|=2x,
由tan 30°=,得.
而由椭圆定义得,|PF1|+|PF2|=2a=3x,
∴,∴.
6.
答案:A
解析:由半角公式可得,
=.
7.
答案:B
解析:由程序框图依次可得,输入N=4,
T=1,S=1,k=2;
,,k=3;
,S=,k=4;
,,k=5;
输出.
8.
答案:D
解析:∵log25>log23>1,∴log23>1>>>0,即log23>1>log32>log52>0,∴c>a>b.
9.
答案:A
解析:如图所示,该四面体在空间直角坐标系O-xyz的图像为下图:
则它在平面zOx的投影即正视图为,故选A.
10.
答案:C
解析:由题意可得抛物线焦点F(1,0),准线方程为x=-1.
当直线l的斜率大于0时,如图所示,过A,B两点分别向准线x=-1作垂线,垂足分别为M,N,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|.
设|AM|=|AF|=3t(t>0),|BN|=|BF|=t,|BK|=x,而|GF|=2,
在△AMK中,由,得,
解得x=2t,则cos∠NBK=,
∴∠NBK=60°,则∠GFK=60°,即直线AB的倾斜角为60°.
∴斜率k=tan 60°=,故直线方程为y=.
当直线l的斜率小于0时,如图所示,同理可得直线方程为y=,故选C.
11.
答案:C
解析:若x0是f(x)的极小值点,则y=f(x)的图像大致如下图所示,则在(-∞,x0)上不单调,故C不正确.
12.
答案:D
解析:由题意可得,(x>0).
令f(x)=,该函数在(0,+∞)上为增函数,可知f(x)的值域为(-1,+∞),故a>-1时,存在正数x使原不等式成立.
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分.
13.答案:0.2
解析:该事件基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共有10个,记A=“其和为5”={(1,4),(2,3)}有2个,∴P(A)==0.2.
14.答案:2
解析:以为基底,则,
而,,
∴.
15.答案:24π
解析:如图所示,在正四棱锥O-ABCD中,VO-ABCD=×S正方形ABCD·|OO1|=××|OO1|=,
∴|OO1|=,|AO1|=,
在Rt△OO1A中,OA==,即,
∴S球=4πR2=24π.
16.答案:
解析:y=cos(2x+φ)向右平移个单位得,=cos(2x-π+φ)=,而它与函数的图像重合,令2x+φ-=2x++2kπ,k∈Z,
得,k∈Z.
又-π≤φ<π,∴.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.
解:(1)设{an}的公差为d.
由题意,=a1a13,
即(a1+10d)2=a1(a1+12d).
于是d(2a1+25d)=0.
又a1=25,所以d=0(舍去),d=-2.
故an=-2n+27.
(2)令Sn=a1+a4+a7+…+a3n-2.
由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.
从而Sn=(a1+a3n-2)=(-6n+56)=-3n2+28n.
18.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C-A1DE的体积.
解:(1)连结AC1交A1C于点F,则F为AC1中点.
又D是AB中点,连结DF,则BC1∥DF.
因为DF⊂平面A1CD,BC1平面A1CD,
所以BC1∥平面A1CD.
(2)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.
由已知AC=CB,D为AB的中点,所以CD⊥AB.
又AA1∩AB=A,于是CD⊥平面ABB1A1.
由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,
故A1D2+DE2=A1E2,即DE⊥A1D.
所以VC-A1DE==1.
19.
解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000.
当X∈[130,150]时,T=500×130=65 000.
所以
(2)由(1)知利润T不少于57 000元当且仅当120≤X≤150.
由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.
20.
解:(1)设P(x,y),圆P的半径为r.
由题设y2+2=r2,x2+3=r2.
从而y2+2=x2+3.
故P点的轨迹方程为y2-x2=1.
(2)设P(x0,y0).由已知得.
又P点在双曲线y2-x2=1上,
从而得
由得
此时,圆P的半径r=.
由得
此时,圆P的半径.
故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.
21.
解:(1)f(x)的定义域为(-∞,+∞),
f′(x)=-e-xx(x-2).①
当x∈(-∞,0)或x∈(2,+∞)时,f′(x)<0;
当x∈(0,2)时,f′(x)>0.
所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增.
故当x=0时,f(x)取得极小值,极小值为f(0)=0;
当x=2时,f(x)取得极大值,极大值为f(2)=4e-2.
(2)设切点为(t,f(t)),
则l的方程为y=f′(t)(x-t)+f(t).
所以l在x轴上的截距为m(t)=.
由已知和①得t∈(-∞,0)∪(2,+∞).
令h(x)=(x≠0),则当x∈(0,+∞)时,h(x)的取值范围为[,+∞);
当x∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).
所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[,+∞).
综上,l在x轴上的截距的取值范围是(-∞,0)∪[,+∞).
请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.
22.
解:(1)因为CD为△ABC外接圆的切线,
所以∠DCB=∠A.
由题设知,
故△CDB∽△AEF,所以∠DBC=∠EFA.
因为B,E,F,C四点共圆,
所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.
所以∠CBA=90°,
因此CA是△ABC外接圆的直径.
(2)连结CE,因为∠CBE=90°,
所以过B,E,F,C四点的圆的直径为CE,
由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2.
而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为.
23.
解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α).
M的轨迹的参数方程为(α为参数,0<α<2π).
(2)M点到坐标原点的距离
d=(0<α<2π).
当α=π时,d=0,故M的轨迹过坐标原点.
24.
解:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
得a2+b2+c2≥ab+bc+ca.
由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.
所以3(ab+bc+ca)≤1,即ab+bc+ca≤.
(2)因为,,,
故≥2(a+b+c),
即≥a+b+c.
所以≥1.
猜你喜欢
如何改变自己的命运和运气(人生迷茫试试三种生活方式)
2022年护士资格证考试时间(2023年护士资格证考试资料)
qq王者战绩怎么关闭(qq上我的王者战绩怎么关)
学车视频自动挡(练车自动挡视频教学全程视频)
博美犬的优缺点有哪些(博美犬适合在家里养吗)
出租车资格证要考几个科目(出租车资格证要考几个科目才能考)
每天喝一瓶纯牛奶有什么好处(经常喝纯牛奶对身体的功效)
高通骁龙778g和麒麟990哪个好(参数对比哪个性能好)
考试中途心态崩了怎么办(考试时心态崩溃怎么办)
什么时候闰月(什么时候闰二月)
太原市旅游攻略 太原最值得去的地方
密云古北水镇旅游攻略 密云古北水镇一日游攻略
银川沙湖旅游攻略 银川沙湖几月份去最好
黔东南旅游攻略 贵州黔东南旅游攻略自由行
青海湖旅游住宿攻略 青海湖环湖住宿攻略
丽江大理洱海旅游攻略 丽江大理攻略最佳旅游攻略
长春旅游攻略景点必去 长春市区旅游攻略必去景点
康定新都桥旅游攻略 新都桥必去的几个景点
普陀山自驾旅游攻略 普陀山旅游自驾游攻略
南昌旅游攻略景点必去 南昌必看的旅游点